MEASUREMENT DATA PROCESSING

Estimation of uncertainty of volume of a 25 mL A-class volumetric flask

Group work

A study case for the selection of instruments and number of repetitions to achieve a desired uncertainty level.

R. Salazar & L. Soto

December 2021

In chemical analysis, volume is one the most common sources of uncertainty:

"Liquid volume measurement is an important step in most industrial and analytical <u>measurement operations</u>. Volume instruments are used in many fields like chemistry, health, biology and pharmacy. In several applications within these fields the measurement of volume is **significant** or **even critical**, therefore it is important to <u>ensure</u> that volume quantities measured using these instruments are **reliable**."

Euramet, Calibration Guide 19

Volumetric flasks are flat bottomed glassware with elongated necks with gauge marks. They are calibrated to the gauge mark at a specified temperature.

Two classes of accuracy are specified:

Class A for higher grade Class B for lower grade

https://www.eiscolabs.com/products/ch1952d

Choose the <u>instruments</u> and the <u>number of measurements</u> required to achieve the <u>desired</u> relative uncertainty of **0.0050%** for the volume of a 25 mL A-class volumetric flask.

Nr	Variable	Mean measured value	Analytica Digital th	1. instrument al balance 0. termometer (2. instrument1 mg [2] 01 °C [5]Analytical balance 0.1 mg [3] Digital thermometer 0.1 °C [6]			3. instrument Kitchen balance 0.1 g ^[4] Mercury thermometer 0.1 °C ^[7]			
			Resol.	Inst. Err	Stdev	Resol.	Inst. Err	Stdev	Resol.	Inst. Err	Stdev
1	m1, g	49.8538	0.00001	0.00005	0.00020	0.0001	0.0005	0.0007	0.1	0.1	0
2	m ₂ , g	74.7533	0.00001	0.00005	0.00500	0.0001	0.0005	0.0050	0.1	0.1	0
3	Т, °С	24	0.01	0.05	0.03	0.1	0.5	0.1	0.1	0.3	0.3

2. Methodology

MDP

Gravimetry: a primary method

$$V = \frac{m_2 - m_1}{a_0 + a_1 \cdot T + a_2 \cdot T^2 + a_3 \cdot T^3 + a_4 \cdot T^4}$$

Where,

V	volume of flask, mL
m_2	mass of flask filled with water, g
m_1	mass of clean and dry flask, g
Т	temperature of water, °C
a_0	9.999E-01
a_1	6.327E-05
a_2	-8.524E-06
a_3	6.943E-08
a_4	-3.821E-10

	1. Introduction			2	2. Methodolog	у				3. Re	sults		4. Conclu.
•	•	•	•	•	•	•	•		•	•	•	•	•
MDP													03.12.2021

Reducing the number of measurement systems and testable experiments

Arrangement	<i>m</i> ₁	m ₂	Т	Arrangement	<i>m</i> ₁	<i>m</i> ₂	Т
1	B1	B1	T1	1	B1	B1	T1
2	B1	B1	T2	2	B1	B1	T2
3	B1	B1	T3	3	B1	B1	Т3
4	B1	B2	T1	4	B2	B2	T1
5	B1	B2	T2	5	B2	B2	T2
				6	B2	B2	T3
27	B3	B3	T3	7	B3	B3	T1
				8	B3	B3	T2
				9	B3	B3	T3

$$n_1$$
, n_2 , and n_T are **not** defined.

$$n_1=3$$
 , $n_T=2$, $n_2=?$

03.12.2021

•	•	•	•	•	•	•	•	•	•	•	•
1. Introduction				2. Methodolog	ју			3. Re	esults		4. Conclu.

MDP

Quantifying uncertainty sources

$$u(m_1) = \frac{s_{m_1}}{\sqrt{n_1}} + \frac{resolution}{\sqrt{12}} + \frac{ins.error}{\sqrt{3}}$$

$$u(m_2) = \frac{s_{m_2}}{\sqrt{n_2}} + \frac{resolution}{\sqrt{12}} + \frac{ins.error}{\sqrt{3}}$$

$$u(T) = \frac{s_T}{\sqrt{n_T}} + \frac{resolution}{\sqrt{12}} + \frac{ins.error}{\sqrt{3}}$$

Calculating the combined standard uncertainty

$$u_c^2(V) = \left(\frac{\partial V}{\partial m_1}\right)^2 u^2(m_1) + \left(\frac{\partial V}{\partial m_2}\right)^2 u^2(m_2) + \left(\frac{\partial V}{\partial T}\right)^2 u^2(T)$$

$$\frac{\partial V}{\partial m_1} = -\frac{1}{a_0 + a_1 T + a_2 T^2 + a_3 T^3 + a_4 T^4}$$

$$\frac{\partial V}{\partial m_2} = \frac{1}{a_0 + a_1 T + a_2 T^2 + a_3 T^3 + a_4 T^4}$$

$$\frac{\partial V}{\partial T} = \frac{(m_1 - m_2)(a_1 + 2a_2T + 3a_3T^2 + 4a_4T^3)}{a_0 + a_1T + a_2T^2 + a_3T^3 + a_4T^4}$$

•	•	•		•	•	•	•	•	•	•	•	•	•
1. I	Introduction		2. Methodology						3. R	esults		4. Conclu.	

03.12.2021

Estimating the expanded uncertainty

$$U(V) = k_{95\%, v_{eff}} \cdot u_c(V)$$

$$v_{eff}(V) = \frac{u_c^4(V)}{\frac{c_1^4 u^4(s_{m1})}{v_{m_1}} + \frac{c_2^4 u^4(s_{m2})}{v_{m_2}} + \frac{c_T^4 u^4(s_T)}{v_T}}$$

$$v_{m_1} = \frac{u^4(m_1)}{\frac{u^4(s_{m_1})}{n_1 - 1}} \qquad v_{m_2} = \frac{u^4(m_2)}{\frac{u^4(s_{m_2})}{n_2 - 1}} \quad v_T = \frac{u^4(T)}{\frac{u^4(s_T)}{n_T - 1}}$$

MDP 03.12.2021 • • • • \bullet ullet1. Introduction 2. Methodology 3. Results 4. Conclu.

3. Results

Expanded uncertainty for different sets of instruments

Expanded uncertainty and number of repetitions, Set I

2. Methodology

Number of repetitions of m_2

ullet

4. Conclu.

•

3. Results

1. Introduction

MDP

Uncertainty contributions for Set I

03.12.2021

• ullet3. Results 4. Conclu. 1. Introduction 2. Methodology

Distribution of simulated values

Set I (B1 & T1) is the best option to measure the volume of a 25 mL flask with the desired uncertainty (k95%,veff) of 0.005%. The minimum number of repetitions is 76.

- Sets I, II, and IV comply with the referential uncertainty of 0.14% from tolerance. The minimum number of repetitions is 3.
- Sets III and V are <u>not suitable</u> for volume calibration due to the high uncertainty contribution of the B3 balance.
- Monte Carlo simulation method shows a **similar** result compared with the GUM approach.

— ✓
— ✓
— ×
— ×

3. Results

4. Conclu

MDP

1. Introduction

Methodology

- [1] ISO 1042. Laboratory glassware one-mark volumetric flasks. 2019.
- [2] ASTM E288 10. Standard specification for laboratory glass volumetric flasks. 2010.
- [3] UKAS. Laboratory 15 traceability: Volumetric apparatus. 2019.
- [4] JCGM. Evaluation of measurement data guide to the expression of uncertainty in measurement. 2008.
- [5] Frank Jones and Georgia Harris. Its-90 density of water formulation for volumetric standards calibration. Journal of Research of the National Institute of Standards and Technology, 97:335, 05 1992.

Thanks for your attention!

Rodney Salazar rodneyc.salazar@gmail.com @rodney.salazar

Leonardo Soto leonardo.sotoj@outlook.com @LeoSotoJ

No.	m_1	m_2	Т	<i>n</i> ₂	U(V),%
1	B1	B1	T1	3	0.0500
2	B1	B1	T2	999	0.0140
3	B1	B1	Т3	999	0.0280
4	B2	B2	T1	336	0.0050
5	B2	B2	T2	999	0.0147
6	B2	B2	Т3	999	0.0222
7	B3	B3	T1	999	0.7186
8	B3	B3	T2	999	0.7187
9	B3	B3	T3	999	0.7187

Set	m_1	m_2	T	n_2	U(V),%
Ι	B1	B1	T1	3	0.0500
				76	0.0050
II	B2	B2	T2	3	0.0438
				999	0.0147
III	B3	B3	T3	999	0.7187
IV	B2	B2	T1	3	0.0508
				336	0.0050
V	B3	B3	T1	999	0.7186

 $n_1 = 3$ $n_2 = 150$

 $|\partial V / \partial x_i \cdot u(x_i)| \times 1000$